An <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e3546" altimg="si714.svg"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>- primal–dual weak Galerkin method for div–curl systems

نویسندگان

چکیده

This paper presents a new Lp-primal–dual weak Galerkin (PDWG) finite element method for the div–curl system with normal boundary condition p>1. Two crucial features proposed Lp-PDWG scheme are as follows: (1) it offers an accurate and reliable numerical solution to under low W?,p-regularity (?>0) assumption exact solution; (2) effective approximation of harmonic vector fields on domains complex topology. An optimal order error estimate is established in Lq-norm primal variable where 1p+1q=1. A series experiments presented demonstrate performance algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations

This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...

متن کامل

Weak Galerkin Finite Element Method for Second Order Parabolic Equations

We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...

متن کامل

An adaptive stochastic Galerkin method

We derive an adaptive solver for random elliptic boundary value problems, using techniques from adaptive wavelet methods. Substituting wavelets by polynomials of the random parameters leads to a modular solver for the parameter dependence, which combines with any discretization on the spatial domain. We show optimality properties of this solver, and present numerical computations. Introduction ...

متن کامل

Element free Galerkin method for crack analysis of orthotropic plates

A new approach for analyzing cracked problems in 2D orthotropic materials using the well-known element free Galerkin method and orthotropic enrichment functions is proposed. The element free Galerkin method is a meshfree method which enables discontinuous problems to be modeled efficiently. In this study, element free Galerkin is extrinsically enriched by the recently developed crack-tip orthot...

متن کامل

On the Galerkin method for semilinear parabolic-ordinary systems

We consider a general system of n1 semilinear parabolic partial differential equations and n2 ordinary differential equations, with locally Lipschitz continuous nonlinearities. We analyse the well-posedness of this problem, exploiting the tools of the semigroups theory, and derive other further regularity results and conditions for the boundedness of the solution. We define the Galerkin semidis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2023

ISSN: ['0377-0427', '1879-1778', '0771-050X']

DOI: https://doi.org/10.1016/j.cam.2022.114881